Hyperspectral image classification and application based on relevance vector machine

نویسندگان

  • DONG Chao
  • ZHAO Huijie
چکیده

The relevance vector machine (RVM) is used to process the hyperspectral image in this paper to estimate the classifiers precisely in the high dimensional space with limited training samples. The detail of RVM is firstly discussed based on the sparse Bayesian theory. Then four multi-class strategies are analyzed, including One-vs-All (OAA), One-vs-One (OAO) and two direct multi-class strategies. In the experiments, the multi-class strategies are compared and RVM is further compared with several classical classifiers, including the support vector machine (SVM). The experiments show that two direct multi-class strategies occupy too much memory space with low efficiency. OAA has the highest precision, but is low in efficiency. OAO is the best in efficiency and the precision approximates to OAA. Compared with SVM, RVM is low in precision, but sparser than SVM. The sparse property is important when the test set is large, which makes RVM suitable for classifying the large-scale hyperspectral image.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features

Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...

متن کامل

Spectral-spatial classification of hyperspectral images by combining hierarchical and marker-based Minimum Spanning Forest algorithms

Many researches have demonstrated that the spatial information can play an important role in the classification of hyperspectral imagery. This study proposes a modified spectral–spatial classification approach for improving the spectral–spatial classification of hyperspectral images. In the proposed method ten spatial/texture features, using mean, standard deviation, contrast, homogeneity, corr...

متن کامل

Sub-pixel classification of hydrothermal alteration zones using a kernel-based method and hyperspectral data; A case study of Sarcheshmeh Porphyry Copper Mine and surrounding area, Kerman, Iran

Remote sensing image analysis can be carried out at the per-pixel (hard) and sub-pixel (soft) scales. The former refers to the purity of image pixels, while the latter refers to the mixed spectra resulting from all objects composing of the image pixels. The spectral unmixing methods have been developed to decompose mixed spectra. Data-driven unmixing algorithms utilize the reference data called...

متن کامل

RVM Classification of Hyperspectral Images Based on Wavelet Kernel Non-negative Matrix Fractorization

A novel kernel framework for hyperspectral image classification based on relevance vector machine (RVM) is presented in this paper. The new feature extraction algorithm based on Mexican hat wavelet kernel non-negative matrix factorization (WKNMF) for hyperspectral remote sensing images is proposed. By using the feature of multi-resolution analysis, the new method of nonlinear mapping capability...

متن کامل

High performance of the support vector machine in classifying hyperspectral data using a limited dataset

To prospect mineral deposits at regional scale, recognition and classification of hydrothermal alteration zones using remote sensing data is a popular strategy. Due to the large number of spectral bands, classification of the hyperspectral data may be negatively affected by the Hughes phenomenon. A practical way to handle the Hughes problem is preparing a lot of training samples until the size ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011